Class 12 27-9-2023

a)

4

b)

MID TERM EXAMINATION - MATHEMATICS

Time: 3 hrs. Max. Marks : 80

General Instructions:

- i) The question paper contains five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.
- ii) Section A has 18 MCQ's question and 2 Assertion Reason based questions of 1 mark each.
- iii) Section B has 5 Very Short Answer (VSA) type questions of 2 marks each.
- iv) Section C has 6 Short Answer (SA) type questions of 3 marks each.
- v) Section D has 4 Long Answer (LA) type questions of 5 marks each.
- vi) Section E has 3 source based /case based/passage based/ integrated units assessment of 4 marks each with sub parts.

SECTION – A

Let A = $\{1, 2\}$, then number of reflexive relations on A is a) 2 b) 4 c) 0 1. d) 8 2. If set A contains 5 elements and set B contains 6 elements , then number of one - one and and onto mappings from A to B is c) 0 d) a) 720 b) 120 none The principal value of $\cos^{-1}(\cos\frac{2\pi}{3}) + \sin^{-1}(\sin\frac{2\pi}{3})$ is a) π b) $4\pi/3$ c) $\pi/2$ 3. d) none $\sin\left[\frac{\pi}{6} - \sin^{-1}(-1/2)\right]$ is equal to 4. a) 1/2 b) 1/3 c) 1/4 d) $\sqrt{3}/2$ The value of $\tan(2\tan^{-1}\frac{1}{3})$ is 5. 12/5 b) 3/4 a) c) 4/3 d) 5/12 Given a skew symmetric matrix $A = \begin{bmatrix} 0 & a & 1 \\ -1 & b & 1 \\ -1 & c & 0 \end{bmatrix}$, the value of $(a + b + c)^2$ is 6. a) 0 d) b) 7. Given the matrix A and B are of order 3x n and m x 5 respectively, then the order of the matrix C = 5A + 3B is 3×5 and m = na) b) 3 x 5 d) 5 x 5 c) 3 x 3 The order of the product of matrices $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} 2 & 3 & 4 \end{bmatrix}$ is 8. a) 1 x 1 b) 1 x 3 c) 3 x 1 d) 3 x 3 Value of k , for which A = $\begin{bmatrix} k & 8 \\ 4 & 2k \end{bmatrix}$ is singular matrix is 9.

c)

 ± 4

d)

0

Std. 1	.2
--------	----

MATHEMATICS

10.	The value of $ 3I_3 $, where I_3 is identity matrix of order 3 is							
	a)	3	b)	9	c)	27	d)	none
11.	If A is any square matrix of order 3 x 3 such that $ adj A = 169$ and $ A $ is non-negative, then the value of $ A $ is							
	a)	13	b)	-13	c)	±13	d)	none
12.	If $y =$	$f(x^2)$ and f'	$(x) = e^{\sqrt{2}}$	\overline{x} , then value of $\frac{dy}{dx}$	is			
	a)	2x <i>e</i> ^{<i>x</i>}	b)	Xe ^x	c)	$x^2 e^x$	d)	$2x^2e^x$
13.	If y =	$\sec^{-1}\left[\frac{\sqrt{x}+1}{\sqrt{x}-1}\right]$	$+\sin^{-1}$	$\left[\frac{\sqrt{x}-1}{\sqrt{x}+1}\right]$, then $\frac{dy}{dx}$ is				
	a)	0	b)	1	c)	-1	d)	none
14.	The va	llue of `k` for v	which tł	the function $f(x) = \begin{cases} \frac{x}{2} \\ \frac{x}{2} \end{cases}$	$\frac{(x+3)^2}{x-3}$	$\frac{36}{36}, x \neq 3$ is co	ntinuou	s at x = 3 is
	a)	12	b)	3	c)	14	d)	9
15.	Which a)	of the following sin2x	g functi b)	on is decreasing in (0, tanx	π/2)? c)	COSX	d)	cos3x
16.	The va a)	lue of x for wh 3/4	ich func b)	tion f(x) = $x - x^2$ is m 1/2	aximum c)	ı, is 1/3	d)	1/4
17	The va	$\int dt = \int \int dt dt = \int dt $.3+5 cosx) dr is	-		-	
17.	a)	0	³⁺⁵ sinx b)	1	c)	2	d)	none
18.	The value of $\int_{-\pi/2}^{\pi/2} \sin^3 x \cos^5 x dx$ is							
	a)	1	b)	π/2	c)	0	d)	none

Assertion – Reasoning Based Questions

In the following questions, a statement of Assertion (A) is followed by a statement of Reason (R), choose the correct answer out of the following choices :

- Both (A) and (R) are true and (R) is the correct explanation of (A). a)
- Both (A) and (R) are true and (R) is not the correct explanation of (A). b)
- (A) is true but (R) is false. c)
- (A) is false but (R) is true. d)

19. Assertion (A):
$$\int \frac{dx}{x^2 + 2x + 2} = \tan^{-1}(x+1) + C$$

Reason (R):
$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1}(x/a) + C$$

If the radius of a circle is increasing at the uniform rate of 3 cm/sec. 20. Assertion (A) : At the instant when the radius of the circle is 2cm, it's area increases at the rate of 12π cm²/sec.

Rate of change of radius $= \frac{dr}{dt}$, Rate of change of area $= \frac{dA}{dt}$. Reason (R) :

SECTION – B

- 21. Find the value of $\sin(2\cos^{-1}(-3/5))$.
- 22. If $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ and $f(x) = x^2 2x 3$, then show that f(A) = 0.
- 23. Evaluate $\int \frac{e^{2x} 1}{e^{2x} + 1} dx$ (OR) Evaluate $\int \frac{dx}{x \log x \log(\log x)}$
- 24. Differentiate $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ w.r.t x.
- 25. An edge of a variable cube is increasing at the rate of 10 cm/sec. How fast the volume of the cube is increasing when the edge is 5cm long?

SECTION - C

- 26. Show that the relation R on the set A = $\{x \in z : 0 \le x \le 12\}$ given by R = $\{(a, b): |a - b| \text{ is multiple of } 4\}$ is an equivalence relation.
- 27. If $A = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$ then find the value of a and b such that $A^2 + aA + bI = 0$. Hence find A^{-1} .

28. Discuss the differentiability of the function $f(x) = \begin{cases} 2x-1, x < 1/2 \\ 3-6x, x \ge 1/2 \end{cases}$ at $x = \frac{1}{2}$.

29. If
$$y = x^{sinx} + sin(x^x)$$
 then find $\frac{dy}{dx}$.

If x = cost + log tan(t/2) and y = sint then find the value of $\frac{d^2 y}{dt^2}$ and $\frac{d^2 y}{dx^2}$ at $t = \pi/4$.

(OR)

- 30. Evaluate $\int \frac{\sin 2x}{\sin 5x \sin 3x} dx$ (OR) Evaluate $\int \frac{3x+2}{x^2+x+1} dx$.
- 31. Find the intervals in which function $f(x) = 5 + 36x + 3x^2 2x^3$ is strictly increasing and strictly decreasing.

SECTION - D

32. If $A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$, find A^{-1} . Hence solve following system of equation: x + 2y + z = 4; -x + y + z = 0; x - 3y + z = 2. (OR) If $A = \begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix}$ find AB and hence solve x - y + z = 4; x - 2y - 2z = 9; 2x + y + 3z = 1. 33. Evaluate $\int_{0}^{\pi} \frac{x \, dx}{a^{2} \cos^{2} x + b^{2} \sin^{2} x}$ (OR) Evaluate $\int_{0}^{1} \frac{\log(1+x)}{1+x^{2}} dx$.

34. Show that of all the rectangles inscribed in a given fixed circle the square has the maximum area.

35. If x = sint, y = sinpt, prove that $(1 - x^2)y_2 - xy_1 + p^2y = 0$.

SECTION – E

36. Three schools DPS, CJM and KPS decided to organise a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs 25/-, Rs 100/- and Rs 50/- each respectively. The number of article sold are given below:

School/Article	DPS	СЈМ	KPS
Handmade Fans	40	25	35
Mats	50	40	50
Plates	20	30	40

Using matrices answer the following :

- a) What is the total money (in Rs) collected by all three schools DPS, CJM and KPS?
- b) If the number of handmade fans and plates are interchanged for all the schools, find the total money collected by all the school.
- 37. The relation between the height of the plant (y in cm) w.r.t exposure to sunlight is governed by the following equation $y = 4x \frac{x^2}{2}$, where x is the number of days exposed to sunlight.

- a) Find the rate of growth of the plant w.r.t exposure of sunlight.
- b) What is the number of days it will take for the plant to grow to the maximum light?
- c) What is the maximum height of the plant?

. (OR)

If the height of the plant is 7/2 cm, find the number of days it has been exposed to the sunlight.

38. Let f be a continuous function defined on the closed interval [a,b] and F be an antiderivative

of f, then
$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a)$$
.

This result is very useful as it gives us method of calculating the definite integral easily. Here, we have no need to write integration constant c.

- / 4

Based on the above information answer the following questions:

a) Evaluate
$$\int_{0}^{1} x e^{x} dx$$
 b) Evaluate $\int_{0}^{\pi/4} 2 \tan^{3} x dx$

-X-X-X-X-X-X-X-X-X-X-